An estimation method for InSAR interferometric phase using correlation weight joint subspace projection

نویسندگان

  • Hai Li
  • Renbiao Wu
چکیده

In this article, we propose a method to estimate the synthetic aperture radar interferometry (InSAR) interferometric phase based on the model of correlation weight joint pixel by using the joint subspace projection technique. In the method, the correlation weight joint data vector is constructed and the data vector can make the noise subspace dimension of the corresponding weight covariance matrix which is not affected by the coregistration error, thus avoiding the trouble of calculating the noise subspace dimension before estimating the InSAR interferometric phase. The method takes advantage of the coherence information of neighboring pixel pairs to auto-coregister the SAR images and employs the projection of the joint signal subspace onto the corresponding joint noise subspace to estimate the terrain interferometric phase. The method can auto-coregister the SAR images and reduce the interferometric phase noise simultaneously. Theoretical analysis and computer simulation results show that the method can provide accurate estimate of the interferometric phase (interferogram) even when the coregistration error reaches one pixel. The effectiveness of the method is verified via simulated data and real data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Interferometric Phase Estimation in InSAR via Joint Subspace Projection

Synthetic aperture radar interferometry (InSAR) is an important remote sensing technique to retrieve the terrain digital elevation model (DEM)[1][2]. Image coregistration, InSAR interferometric phase estimation (or noise filtering) and interferometric phase unwrapping[3][4][5][6] are three key processing procedures of InSAR. It is well known that the performance of interferometric phase estimat...

متن کامل

Algorithm of Interferometric Coherence Estimation for Synthetic Aperture Radar Image Pair

Interferometric coherence is an important indicator of reliability for interferograms obtained by interferometric synthetic aperture radar (Interferometric SAR, InSAR). Areas with low coherence values are unsuitable for interferometric data processing. Also, it may be used as a classification parameter for various coverage types. Coherence magnitude can be calculated as an absolute value of the...

متن کامل

A Synthetic Aperture Radar Simulator for Repeat Pass Interferometric Data

Correlation between Interferometric Synthetic Aperture Radar (InSAR) pairs is essential for accurate interferometric phase estimation and digital elevation model (DEM) reconstruction. In this paper, a SAR simulator capable of generating Rayleigh and K-distributed terrain clutter and estimating correlation between InSAR passes will be presented. Furthermore, this simulator will be used to study ...

متن کامل

Comparison of Local and Non-Local Methods in Covariance Matrix Estimation by Using Multi-baseline SAR Interferometry and Height Extraction for Principal Components with Maximum Likelihood Approach

By today, the technology of synthetic aperture radar (SAR) interferometry (InSAR) has been largely exploited in digital elevation model (DEM) generation and deformation mapping. Conventional InSAR technique exploits two SAR images acquired from slightly different angles, in which the information of elevation and deformation can be captured through processing of the phase difference of the image...

متن کامل

A noise model for InSAR time series

Interferometric synthetic aperture radar (InSAR) time series methods estimate the spatiotemporal evolution of surface deformation by incorporating information from multiple SAR interferograms. While various models have been developed to describe the interferometric phase and correlation statistics in individual interferograms, efforts to model the generalized covariance matrix that is directly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013